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Abstract. A commuting Minkowski position variable in the two-twistor phase space is found,
providing a link between twistor phase spaces and the extended phase spaces for an elementary
spinning particle, as defined by Zakrzewski. The two-twistor phase space is shown to be
the product of three symplectic manifolds: the (forward) cotangent bundle to the Minkowski
spacetime, the cotangent bundle to a circle (electric charge phase space) and the cotangent bundle
to the real projective spinor space. The decomposition of the latter into Lorentz-‘irreducible’
parts gives exactly the one-parameter family of extended phase spaces described by Zakrzewski
for b = 0 (and arbitrary a).

0. Introduction

Well known troubles to formulate a relativistic mechanics of interacting particles may
suggest that a non-standard approach to the subject is needed. As a possible way out,
it has been proposed in [2] to consider arbitrary Cartesian powers of the twistor phase space
(the latter being understood as a fundamental building block), which carry a natural action
of the Poincaré group, and then to try to recognize the spacetime nature of such a (possibly
extended) object (in addition to some purely internal degrees of freedom). The dynamics is
governed by some Poincaré-invariant Hamiltonian.

It has been pointed out in [3, 2] that in the product of two or more twistor phase spaces,
there exist natural spacetime coordinates Xa (a = 0, 1, 2, 3). According to [2], they do not
commute, namely

{Xa, Xb} = − 1

m2
Rab

where m is the total mass and R is the spin tensor: the rotational (with respect to the
linear momentum p) part of the Lorentz momentum (relative to any point). The position X

described by Xa is interpreted as the centre-of-massof the system, since it turns out that
the Lorentz momentum MX with respect to X is purely internal: it coincides with R (in
other words, MXp = 0).

On the other hand, in [1] a family of phase spaces extending the Souriau’s [4]
spaces of motions of elementary systems was introduced, in order to include explicitly the
(commuting) spacetime position. We have called them extended phase spaces. Studying the
relationship between the two-twistor phase space and extended phase spaces was the main
motivation for the present paper.

§ Humboldt fellow.
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196 A Bette and S Zakrzewski

The result of the study is as follows. We have found commuting position variables in
the two-twistor phase space (see section 3 below). This allows us to represent the whole
two-twistor phase space as a (symplectic) product of the cotangent bundle to the Minkowski
space and some other symplectic manifold, described by those variables which commute
with the total linear momentum and the (new) position. By the results of [1], a part of
these variables is immediately given by the Lorentz momentum relative to the commuting
position (in [1] it was denoted by S; here we denote it by 6 in order not to suggest its
interpretation as the spin). We find that this second symplectic manifold is itself a product
of a cotangent bundle to U(1) (which may be interpreted as the Kaluza–Klein variable) and
the cotangent bundle to the real projective spinor space.

The latter cotangent bundle decomposes (in the sense of symplectic reductions) onto
Lorentz co-adjoint orbits with b = 0 and arbitrary a (in the notation of [1]). This explains
our main result: apart from the Kaluza–Klein phase and the conjugate charge, the two-
twistor phase space decomposes onto the one-parameter family of extended phase spaces,
the parameter a of [1] being identified with the difference of helicities of the two twistors.
It is this parameter which is identified with the ‘charge’ corresponding to the U(1) action
on the real projective spinor space (the Hopf U(1)-principal bundle over the 2-sphere). This
explains the quantization of a (in the corresponding quantum theory).

1. Twistor space

The fundamental object in twistor theory [5] is the twistor spaceT , which is a four-
dimensional complex vector space equipped with a Hermitian form

T × T 3 (Z1, Z2) 7→ (Z1|Z2) ∈ C
(say, anti-linear in the second argument) of signature (2, 2). Linear transformations of
T preserving the Hermitian form and having the determinant equal 1 form a group G

isomorphic to SU(2, 2). The set of two-dimensional isotropic (with respect to the Hermitian
form) subspaces in T is interpreted as the compactified Minkowski space. The ordinary
Minkowski space M is identified with the set of two-dimensional isotropic subspaces which
are transversal to one distinguished such subspace (the infinity) S ⊂ T .

Relaxing the isotropy condition, we obtain the complexified Minkowski space. Two-
dimensional subspaces transversal to S are in one-to-one correspondence with projections on
S and to each such projection there corresponds the conjugate—with respect to the Hermitian
form—projection. This gives the involution in the complexified Minkowski space, whose
fixed points form the real Minkowski space. Taking the real part of the projection, we have
also the possibility of taking the real part of a point in the complexified Minkowski space.

For each Z ∈ T , the anti-linear functional

S 3 ω 7→ (Z|ω) ∈ C
depends only on the projection π of Z in T/S (by the isotropy of S). We have, therefore,
a pairing between T/S and S given by

(π |ω) := (Z|ω) for π ∈ T/S, ω ∈ S

where Z is any element of T whose projection on T/S is π . The pairing defines an
isomorphism between T/S and S

∗
.

It is easy to describe the affine structure of M . Any two two-dimensional subspaces
z1, z2 ⊂ T transversal to S define a linear map v from T/S to S,

π 7→ v(π) := 1

i
(Z2(π) − Z1(π)) (1)
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where Zj(π) ∈ zj are twistors whose projections on T/S are equal π . In the case of
isotropic subspaces this map is Hermitian:

(π |vη) = −1

i
(Z1(π)|Z2(η) − Z1(η)) = −1

i
(Z1(π)|Z2(η))

= 1

i
(Z2(π) − Z1(π)|Z2(η)) = (η|vπ)

for π, η ∈ T/S ∼= S
∗
. Therefore any two points of M define an element of the vector space

S ⊗ S

which is Hermitian with respect to the natural conjugation ω ⊗ λ 7→ λ ⊗ ω. We recognize
here the well known spinor presentation of the Minkowski vector spaceas the real part

M := Re(S ⊗ S).

It is easy to see that Minkowski vectors v ∈ M can be added to points x ∈ M , by the
converse procedure: to each point Z of x we add iv(π(Z)). In other words, the action of
translations on M is induced by the action of translations on T , defined by

T 3 Z 7→ Z + iv(π(Z)) ∈ T . (2)

These are precisely transformations from G which act as identity on S. The subgroup of G

composed of transformations preserving S and having determinant 1 on S, is precisely the
(covering of the) Poincaré group. It acts on M via the known spinor action of the Lorentz
group SL(S) ∼= SL(2, C) on S and (the complex conjugate action on) S.

The whole group G acts naturally on the compactified Minkowski space. These
transformations are known as conformal transformations. That is why G ∼= SU(2, 2) is
said to be the conformal group.

Since we want to have a fixed metric tensor on M , we assume that a fixed volume
form ε on S is given. In terms of ε, the Minkowski metric is given by

gab = gAA′BB ′ := εABεA′B ′

i.e. the scalar product of two vectors v, w ∈ M is given by

g(v, w) = gabv
awb = εABεA′B ′vAA′

wBB ′
. (3)

Small latin letters are reserved for the Minkowski vector indices, whereas the capital latin
letters are used as spinor indices (and primed ones refer to the complex conjugate spinors).
Recall that one vector index a corresponds to the pair of spinor indices A, A′. It is convenient
to use indices to indicate the character of a tensor and the kind of operation being performed
(e.g. contraction) rather than to refer to a particular basis (abstract indicesof [5]).

From now on by a twistor space we mean the whole structure described by T , (·|·),
S and ε. Elements of T are called twistors. It is sometimes convenient to choose a fixed
element x0 ∈ M (the origin), i.e. a two-dimensional isotropic subspace S0 transversal to S.
In this case

T = S ⊕ S0
∼= S ⊕ S

∗
(4)

and we can represent a twistor Z ∈ T by a pair of spinors (ω, π), where ω ∈ S and π ∈ S
∗
.

For Z1 = (ω, π), Z2 = (λ, η) we have

(Z1|Z2) = 〈ω, η〉 + 〈π, λ〉 = ωAηA + πA′λ
A′

.

(Of course, if we change the reference point x0 7→ x̃0, then ω 7→ ω̃ = ω − iv(π), where
v = x̃0 − x0; in coordinates, ω̃A = ωA − ivAA′

πA′ .)
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The twistor space provides a natural framework for the conformal geometry of the
Minkowski space. Moreover, it has a natural structure of a phase spaceof a massless particle
of an arbitrary helicity (spin). Consider the following G-invariant constant symplectic 2-
form on T :

� = −2 Im(·|·) i.e. �(Z1, Z2) = i((Z1|Z2) − (Z2|Z1)) for Z1, Z2 ∈ T . (5)

Denote by r ∂
∂r

the radial vector field on T (the identity map). Since £r ∂
∂r

� = 2�,

γ := 1

2
r

∂

∂r
y� (6)

is the potential of �, i.e. � = dγ . By the construction, γ is also G-invariant. Therefore,
we can calculate the moment map for the action of G on (T , �):

JX(Z) = XT (Z)yγZ = 1
2�(Z, XT (Z)). (7)

Here XT is the fundamental vector field on T corresponding to an element X of the Lie
algebra of G. In particular, taking as X the infinitesimal translation, Z 7→ XT (Z) :=
iv(π(Z)) (see (2)), we obtain (setting π(Z) ≡ π )

JX(Z) = 1
2�(Z, iv(π)) = − Im(Z|iv(π)) = (π |v(π)) = (v(π)|π) = 〈v, π ⊗ π〉

hence the linear momentum equals

p = π ⊗ π (i.e. pa = pAA′ = πAπA′).

Of course, p2 = pap
a = 0.

Poincaré transformations preserving the origin x0 ∈ M (i.e. the subspace S0) are of the
form

(ω, π) 7→ (3ω, (3
∗
)−1π)

where 3 ∈ SL(S) ∼= SL(2, C). Taking as X in (7) an element of sl(S) ∼= sl(2, C), we
obtain

JX(Z) = 1
2�(Z, (Xω,−X

∗
π)) = Im(Z|(Xω, −X

∗
π)) = 2 Im〈Xω,π〉

= 2 Im XB
CωCπB = 2 Im XBAεACωCπB

= −2 Im XBAωAπB = 2 Re iXABωAπB (8)

(we have used the symmetry of XAB). Since the convenient invariant scalar product on

2∧
M ∼= o(g) ∼= sl(S) ∼= (S ⊗ S)symm (9)

(here o(g) ⊂ End(M ) is composed of infinitesimal Lorentz transformations) is given by

〈〈X, Y 〉〉 := − 1
2 tr XY = 1

2XjkYjk = 2 Re XABYAB (10)

we see that the Lorentz momentum (as valued in (S ⊗ S)symm) is given by

MAB = iω(AπB) = i

2
(ωAπB + πAωB) (11)

or, as a bi-vector,

Mab := MABεB ′A′ + εBAM
A′B ′

= −i(ω(AπB)εA′B ′ − εABω(A′
πB ′)) (12)

(cf formula (2.7) in [2] or (1.34) in [5]). Taking iMAB = −ω(AπB) instead of MAB , one
can easily calculate the Pauli–Lubanski polarization vector W = (iM)p:

Wa = (iM)abpb = (ω(AπB)εA′B ′ + εABω(A′
πB ′))πBπB ′ = 1

2 (Z|Z)pa
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hence

s := 1
2 (Z|Z) (13)

is the helicity of the massless particle.

Warning: multiplication by i in
2∧

M is always understood as the multiplication by
i in any of three isomorphic complex spaces in (9). (It coincides with the Hodge star on
2∧

M .)

2. Natural position in the two-twistor phase space

Definition 2.1.The subset

Tp(2) := {(Z1, Z2) ∈ T × T : π(Z1) and π(Z2) are linearly independent}
is said to be the two-twistor phase space.

It is clear that two linearly independent twistors define a two-dimensional subspace of
T , and the subspace is transversal to S when the two twistors have linearly independent
projections on T/S. It follows that each pair (Z1, Z2) ∈ Tp(2) defines a point in the
complexified Minkowski space. Using the identification (4), Z1 = (ω, π), Z2 = (λ, η), it
is easy to see that this point z ∈ S ⊗ S is given by (cf [5])

za = zAA′ = i

f
(ωAηA′ − λAπA′

) (14)

where f := πA′
ηA′ (Tp(2) is exactly the subset of T × T on which f 6= 0).

Note that the square of the total mass is strictly positive on Tp(2):

m2 = pap
a = 2|f |2 > 0 (15)

where

pa = pAA′ = πAπA′ + ηAηA′ (16)

is the total linear momentum.
Of course, the map Tp(2) 3 (Z, W) 7→ z ∈ S ⊗ S is Poincaré covariant. In particular,

{pa, z
b} = δa

b. (17)

For the real and imaginary parts of z = X + iY , we obtain

{pa, X
b} = δa

b {pa, Y
b} = 0 (18)

(hence Y is a vector: it does not transform under translations). A natural question about
the real position Xa is whether it belongs to the world line of the massive particle whose
linear momentum is p and the Lorentz momentum (with respect to the origin) is

M = M1 + M2 (19)

(the total Lorentz momentum), where

MAB
1 = iω(AπB) MAB

2 = iλ(AηB).

Recall that such a line is given by the locus of points X in the Minkowski space such that
the Lorentz momentum with respect to X has only the rotational part, i.e.

MX = R (20)
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where

Mab
X = Mab − (paXb − Xapb)

Rab = Mab − 1

m2
((Mp)apb − pa(Mp)b)

(R does not depend on the point relative to which the Lorentz momentum is defined). It
is easy to see that (20) is equivalent to MXp = 0. Both conditions are equivalent to the
following condition: m2X + Mp is parallel to p. In our case (X given as the real part of
z), the latter condition is satisfied because of the following formula

m2Xa = −Mabpb + lpa l := Im(ωAπA + λAηA) (21)

shown in the appendix (section A.3; cf also [2, 5]), hence X indeed belongs to the centre-
of-massworld line. In the appendix we show also that

m2Y a = Wa − (s1 + s2)p
a (22)

where W := (iM)p is the total Pauli–Lubanski vector and sj = 1
2 (Zj |Zj) are the helicities

of our two twistors.

Lemma 2.2.

{Xa, Xb} = {Y a, Y b} = 1

m4
{Wa, Wb} = − 1

m2
Rab. (23)

Proof. The first equality follows from {za, zb} = 0 (z is a holomorphic function of (Z, W)

and the symplectic structure is of type (1, 1)). The second equality is the consequence of
(22) and {Wa, pb} = 0 (W is a vector: it does not change under translations). The third
equality follows from

{(iM)jl, (iM)km}plpm = −{Mjl, Mkm}plpm = −p2Mjk + (Mp)jpk − (Mp)kpj

= − p2Rjk (24)

and

pl{(iM)jl, pm} ∼ plε
jlab{Mab, pm} = plε

jlab(gampb − gbmpa) = 0 (25)

(εjlab is the totally antisymmetric tensor). �

3. Commuting positions

Apart from the natural position X in Tp(2), one can introduce two other natural positions—
associated with the two massless constituents.

Although a massless particle with spin s 6= 0 has no world line (points x in the
Minkowski space such that Mxp = 0 form a three-dimensional hyperplane; here (p, M)

is the Poincaré momentum of the particle), it determines a world line with respect to any
fixed four-velocity u0 (an observer):

Mxu0 = 0 or x = 1

p · u0
(−Mu0 + (x · u0)p) (26)

(we use a short notation x · y for the scalar product).
In our case of two massless particles with Poincaré momenta (pj , Mj ), k = 1, 2, we

have at our disposal the total linear momentum p = p1 + p2, which we can use as the
reference. Thus, we are led to the following ‘world lines relative to the common rest
frame’:

xj = 1

pj · p
(−Mjp + (xj · p)pj ) j = 1, 2. (27)
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Moreover, on each of these lines one can choose a point by requiring that (xj − X) · p = 0
(i.e. xj and X have the same time relative to p). We obtain then the final formula for the
two new positions:

xj = 1

pj · p
(−Mjp + (X · p)pj ) j = 1, 2. (28)

Note that

X = x1 + x2

2
(29)

and 1xj := xj − X satisfy 1x1 = −1x2, (1x1) · p = 0 and

1x1 = 1

m2
((M2 − M1)p + l(p1 − p2)) (30)

(l = X · p is given in (21)).
We now derive a simple (twistor) formula for 1x1. As before, Z1 = (ω, π) and

Z2 = (λ, η).

Lemma 3.1.We have

m21x1 = 2 Im ρw (31)

where ρ = (Z1|Z2), wa = ηAπA′
.

Proof. First we shall show that (1x1) · p1 = 0. From (30) we see that this holds if and
only if

p1 · (M2 − M1)p = lp1 · p2. (32)

Since

p2 · M1p1 = −iηAηA′(ω(AπB)εA′B ′ − εABω(A′
πB ′))πBπB ′ = (p1 · p2) Im(ωBπB)

and, analogously, p1 · M2p2 = (p1 · p2) Im(λBηB), we have

p1 · (M2 − M1)p2 = p1M2p2 + p2M1p1 = (p1 · p2) Im(ωBπB + λBηB)

hence (32) definitely holds.
It follows that 1x1 is perpendicular both to p1 and p2. It is easy to see that the

complex vector w has also this property. Therefore there exists a complex number α such
that 1x1 = αw + αw. One can easily compute

w · M1p = i|f |2ωAηA w · M2p = −i|f |2πA′λ
A′

w · w = 0 w · w = −|f |2

hence

− i

2
ρ = 1

m2
w · (M2 − M1)p = w · (1x1) = αw · w = −α|f |2.

It follows that α = iρ/m2 and this ends the proof. �

The main result of this paper is formulated in the following theorem.

Theorem 3.2.Both positions introduced in formula (28) have commuting coordinates:

{xa
1 , xb

1 } = 0 {xa
2 , xb

2 } = 0.
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Proof. We introduce the following tensor notation

({t ⊗, s})ab := {ta, sb}
for the bracket of two quantities with indices.

In the appendix we prove that

{X ⊗, 1x1} + {1x1
⊗, X} = 0 (33)

(section A.5) and

{1x1
⊗, 1x1} = −{X ⊗, X} (34)

(section A.6), hence

{(X ± 1x1)
⊗, (X ± 1x1)} = [{X ⊗, X} + {1x1

⊗, 1x1}] ± [{X ⊗, 1x1} + {1x1
⊗, X}] = 0.

�

4. The structure of the two-twistor phase space

Due to the commutativity of the coordinates of x := x1, we can treat (xa, pb) as the usual
canonical variables:

{xa, xb} = 0 {pa, pb} = 0 {pa, xb} = δa
b

(the last bracket follows from the fact that x is Poincaré covariant).
From [1] we know, that 6 := Mx commutes both with x and p. In the appendix

(section A.7) we prove the following lemma.

Lemma 4.1.As an element of (S ⊗ S)symm, 6 is given by

6 = η ⊗ σ + σ ⊗ η where σ := i

2f
((s1 − s2)π + ρη). (35)

Note that 6 determines η up to a complex factor. It follows that the complex projective
part of η, hence also the real projective part of p2, commutes with x (of course, the whole
η commutes with p). But we have in fact more than this: in fact the real projective part
[η] ∈ RP(T /S) of η commutes with x, due to the following formula

{ηA, xb} = 1

m2
ηApb

1 (36)

which we prove in the appendix (section A.8). By the real projectivespace of a complex
vector space E we shall mean the quotient of E \ {0} under the equivalence relation

ζ ′ ∼ ζ ⇐⇒ ζ ′ = tζ for some positive real number t. (37)

Let us now distinguish the following three groups of variables:
(1) (x, p), describing T ∗

+M—the forward cotangent bundle to the Minkowski space (by
this we mean the subset of T ∗M such that p2 > 0).

(2) (φ, e), where

φ := phase of f (defined modulo 2π ) e := 2s1 (38)

Note that

{e, φ} = 1. (39)

(3) 6 together with the real-projective part [η] of η.

Proposition 4.2.The above three groups of variables are mutually commuting.
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Proof. We know already that the third group commutes with the first. It is sufficient to
show that s1 and φ commute with the first and the third group.

Since variables x, p, η, 6 are all invariant with respect to the change of the phase of
the first twistor, they commute with s1 (for 6, we can use either the invariance of σ , or
the definition 6 = Mx = M − p ∧ x and the fact that M commutes with each conformal
invariant).

Trivially, φ commutes with p and η (all are ‘π -like’). It commutes with 6, since f is
Lorentz-invariant (and 6 generates the Lorentz group action on ‘π -like’ variables). It also
commutes with x. Namely, using easy to check formulae

{f, l} = 0 {f, ρ} = 0 {f, ρ} = 0 (40)

we have

{f, X} = 1

m2
{f, l}p = 0 and {f, 1x1} = 1

im2
({f, ρ}w − {f, ρ}w) = 0. (41)

�
Theorem 4.3.The two-twistor phase space is isomorphic to the symplectic product

T ∗
+M × T ∗S1 × T ∗N (42)

where N := RP(S) (S is the spinor space).

Proof. N is of course the quotient of S \ {0} by the equivalence relation (37). We denote
the equivalence class of ζ ∈ S by [ζ ].

Let the real duality between S∗ and S be defined by

〈ξ, ζ 〉 := 2 Re〈ξ, ζ 〉C where 〈ξ, ζ 〉C := ξAζA. (43)

Since T ∗N is the special symplectic reduction of T ∗(S \{0}) ⊂ T ∗S arising from the natural
projection, the elements of T ∗N are in one-to-one correspondence with classes of elements
(ζ, ξ) ∈ T ∗(S \ {0}) = (S \ {0}) × S∗ modulo the equivalence

(ζ, ξ) ∼
(

tζ,
1

t
ξ

)
t > 0 (44)

with additional condition

〈ξ, ζ 〉 = 0. (45)

The class of (ζ, ξ) is a covector at the point [ζ ] ∈ RP(S).
To each X ∈ sl(S) there corresponds the vector field ζ 7→ Xζ on S and its canonical

Hamiltonian on T ∗S

JX(ζ, ξ) = 〈ξ, Xζ 〉 = 2 Re(ξAXA
BζB) = −2 Re(ξAXABζB). (46)

It follows that the corresponding moment map (as valued in (S ⊗ S)symm) is given by

(ζ, ξ) 7→ − 1
2 (ζ ⊗ ξ + ξ ⊗ ζ ). (47)

(ξ on the right-hand side is considered as an element of S.) Since the action of the Lorentz
group on S \ {0} passes to the quotient N , the same formula is valid on T ∗N (of course
(47) is invariant with respect to the scaling (44)).

We may now identify the target space of the third group of variables. We can pass from
[η] to [ζ ] := [η] ∈ RP(S) and use the identification of the Lorentz moment maps (35) and
(47) to identify

ξ = −2σ . (48)
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Our mutually commuting three groups of variables clearly describe a map

(ω, π, λ, η) 7→ (x, p; φ, e; ζ, ξ) (49)

from Tp(2) to (42). We shall show that this map is surjective (assuming, of course, that
ζ 6= 0, 〈ξ, ζ 〉 = 0 and (ζ, ξ) is considered up to equivalence (44)). Suppose that we are
given (x, p; φ, e; ζ, ξ). Define η := tζ , where t > 0 is such that

η ⊗ η = p2 satisfies p · p2 = m2

2
(we shall assume in the sequel that ζ is adjusted so that t = 1). Define π such that

π ⊗ π = p − p2 and πA′
ηA′ = f := eiφ

√
m2

2
.

Due to (35) and (48), we have to set

ρ := πAξA′ s2 = e/2 + (s2 − s1) = e/2 + iηAξA. (50)

Thus

1x1 := 1

im2
(ρw − ρw) where w = η ⊗ π (51)

and

X := x − 1x1 Y := 2

m2
(Re ρw − (e/2 + iηAξA)p1 − e/2p2) (52)

and finally

z := X + iY ωA := izAA′
πA′ λA := izAA′

ηA′ . (53)

One can check that these definitions are consistent. For example, s1 and s2 are indeed given
by formula (13) applied to the first and the second twistor, respectively. Moreover, each
definition was forced by the considered map, which shows that the map is also injective. �

5. Final remarks

By theorem 4.3, the two-twistor phase space is a product of the ‘charge phase space’ T ∗S1

and a type of extended phase space as considered in [1]. Spaces considered in [1] involve
one Lorentz co-adjoint orbit, while the present model is a ‘direct integral’ of cases with
different orbits. Using (35) and (59) we can calculate the parameter of the Lorentz co-adjoint
orbits (cf [1]) which occur here:

(a + ib)2 = 〈〈6, 6〉〉C = −4(ε(η, σ ))2 = (s1 − s2)
2.

It follows that b = 0. (Note that the Killing forms (10) and (58) differ by the sign from
those considered in [1]; this is also the reason for the change of sign at R in (23).)

Another way of writing (42) would be

Tp(2) ∼= T ∗
+(M × S1 × RP(S)) (54)

(‘+’ refers to p2 > 0), hence the two twistor phase space is just (a subset of) a cotangent
bundle, which allows to consider not only Hamiltonian but also Lagrangian formulation of
dynamics (in this connection, see e.g. [7, 8]).

Next possibility would be to consider

T ∗(M × S1 × S) (55)
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which involves all Lorentz orbits. It seems that such a space should emerge as a symplectic
factor in the three- (or more) twistor space.

Further study is required to explain whether the new insight into the structure of the
two-twistor phase space can be useful for a Hamiltonian description of a charged particle
with magnetic moment.
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Appendix

A.1. Useful spinorial formulae

(1) metric: gab = εABεA′B ′

(2) inverse ε: εABεAC = δB
C

(3) raising–lowering: ξA = εABξB , ξB = ξAεAB

(4) anti-symmetrization:

2ω[AλB] ≡ ωAλB − λAωB = ε(ω, λ)εAB ≡ (ωCλC)εAB (56)

(5) isomorphism (9): Relations between Mab, Ma
b, MA

B and MAB are as follows:

Ma
b = Macgcb MA

B = MACεCB

Mab := MABεB ′A′ + εBAM
A′B ′

2MAB = MAA′B
A′ .

(57)

In addition to formula (10), we have the complex Killing form

〈〈X, Y 〉〉C := 〈〈X, Y 〉〉 − i〈〈iX, Y 〉〉 = 2XABYAB (58)

(cf [1]). For XAB = u(AvB) we have

〈〈X, 〉〉C = −(ε(u, v))2. (59)

A.2. Twistor Poisson brackets

The symplectic form (5) has the following coordinate description

� = i(dωA ∧ dπA + dπA′ ∧ dωA′
)

hence we have

{πA, ωB} = iδB
A {ωA′

, πB ′ } = iδA′
B ′

and the remaining two combinations are zero. It is also convenient to record

{πA, ωB} = {ωA, πB} = iεAB.

When computing various Poisson brackets in the two-twistor space, it is convenient to
remember the following simplifying rules.
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(1) Conformal invariants are also Poincaré invariants hence commute with any function
of Poincaré generators, e.g. {ρ, m2} = 0.

(2) Purely holomorphic (resp. antiholomorphic) functions commute among themselves.
Due to this, we have for instance {ρ, w} = 0.

(3) Purely momentum functions commute, e.g. {m2, w} = 0, {w ⊗, w} = 0, {w ⊗, w} = 0.
(4) Helicity generates rotations by phase factors, hence it commutes with any quantity

invariant under changing the phase of the twistor, e.g. {s1, ρw} = 0.

A.3. Proof of formulae (21) and (22)

The N -twistor analogue of (14) is given by

m2za = 2i(πjBπk
B)ωA

j πA′
k

where the indices j, k = 1, . . . , N label the N > 2 twistors. We have

m2za = 2i(ω(A
j πjB) + ω

[A
j πjB])πk

BπA′
k = 2MAB

j πk
BπA′

k − i(ωC
j π

j

C)εABπk
BπA′

k

= (MAB
j πk

BπA′
k + M

A′B ′

j πk
B ′π

A
k ) + 1

i
(iMAB

j πk
BπA′

k

+iM
A′B ′

j πk
B ′π

A
k ) − i(ωC

j π
j

C)pAA′

= − Mabpb + i(iM)abpb − i(ωC
j π

j

C)pa.

Taking the real and imaginary part of it, we get

m2Xa = −Mabpb + Im(ωC
j π

j

C)pa m2Y a = (iM)abpb − Re(ωC
j π

j

C)pa. (60)

Note that (iM)p =: W is the Pauli–Lubanski vector and Re(ωC
j π

j

C) = ∑
j sj is the sum of

helicities. We have therefore

Y = 1

m2

(
W −

( ∑
j

sj

)
p

)
. (61)

A.4. Pauli–Lubanski vector

Here we collect certain useful algebraic formulae which allow for yet another expression
for Y and W .

A.4.1. Some scalar products withw.

w · w = 0 w · w = −|f |2 p1 · w = 0 p2 · w = 0

Y · w = −ρ

2
Y · ρw = − 1

2 |ρ|2 Y · Re ρw = − 1
2 |ρ|2 Y · Im ρw = 0 (62)

ρw · ρw = 0 ρw · ρw = −|ρ|2|f |2 Re ρw · Im ρw = 0 (63)

(Re ρw)2 = (Im ρw)2 = 1
2 (ρw · ρw) = −|ρ|2|f |2

2
.

The last formula in (62) states that Y · 1x1 = 0. Hence Y must be a linear combination of
p1, p2 and Re ρw (the latter vector is perpendicular to 1x1 by (63)):

Y = c1p1 + c2p2 + c3 Re ρw.
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We have

c2p1 · p2 = p1 · Y = Im πAπA′ i

f
(ωAηA′ − λAπA′

) = − Re ωAπA = −s1

c1p1 · p2 = p2 · Y = (p − p1) · Y = −(s1 + s2) − (−s1) = −s2

and

−c3
|ρ|2|f |2

2
= c3(Re ρw)2 = Re ρw · Y = − 1

2 |ρ|2

hence

|f |2c1 = −s2 |f |2c2 = −s1 |f |2c3 = 1

and finally

Y = 1

|f |2 (Re ρw − s2p1 − s1p2) (64)

(cf [6]). Using (22), we see that

W = (s1 + s2)p + m2Y = (s1 − s2)(p1 − p2) + ρw + ρw (65)

(cf [6]).

A.5. Proof of formula (33)

First we show that

{X ⊗, w} = 1

m2
w ∧ p. (66)

From definitions of z and w we obtain

{za, wb} = 1

f
εABπA′

πB ′ {za, wb} = − 1

f
ηAηBεA′B ′

.

Using

εA′B ′ = −2π [A′
ηB ′]

f

(cf (56)), we have

{Xa, wb} = 1

2f
εABπA′

πB ′ − 1

2f
ηAηBεA′B ′

= 1

m2
[ηAηB(πA′

ηB ′ − ηA′
πB ′

) − (πAηB − ηAπB)πA′
πB ′

]

= 1

m2
(wapb

2 − pa
2wb − pa

1wb + wapb
1)

and (66) follows. Now, using {X, ρ} = 0 (cf [2]) and{
X ⊗,

w

m2

}
=

{
X,

1

m2

}
⊗ w + 1

m2
{X ⊗, w}

= 2

m4
p ⊗ w + 1

m4
w ∧ p = 1

m4
(p ⊗ w + w ⊗ p)

we see that {X, 1x1} is symmetric. This implies (33).
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A.6. Proof of formula (34)

It is easy to derive (subsequently) the following Poisson brackets

{ρ, ρ} = 2i(s2 − s1) {ρ, w} = 0 {ρ, w} = i(p2 − p1)

{ρw ⊗, ρw} = (iρw) ∧ (p2 − p1) {ρw ⊗, ρw} = 2i(s2 − s1)w ⊗ w

{ρw ⊗, ρw} + {ρw ⊗, ρw} = i(ρw − ρw) ∧ (p2 − p1) (67)

{ρw ⊗, ρw} + {ρw ⊗, ρw} = 2i(s2 − s1)w ∧ w. (68)

From this we obtain

{(ρw − ρw) ⊗, (ρw − ρw)} = i(ρw − ρw) ∧ (p2 − p1) − 2i(s2 − s1)w ∧ w (69)

{(ρw + ρw) ⊗, (ρw + ρw)} = i(ρw − ρw) ∧ (p2 − p1) + 2i(s2 − s1)w ∧ w. (70)

Using (69) we have

{1x1
⊗, 1x1} =

{
1

im2
(ρw − ρw) ⊗,

1

im2
(ρw − ρw)

}
= − 1

m4
{(ρw − ρw) ⊗, (ρw − ρw)}

= − 1

m4
[i(ρw − ρw) ∧ (p2 − p1) − 2i(s2 − s1)w ∧ w].

On the other hand, computing

{p1 − p2, ρ} = {2p1 − p, ρ} = 2{p1, ρ} = 2iw

{(p1 − p2)
⊗, (ρw + ρw)} = 2iw ∧ w

and using (65) and (70), we get

{W ⊗, W } = {(ρw + ρw) ⊗, (ρw + ρw)} + (s1 − s2)({(p1 − p2)
⊗, (ρw + ρw)}

+{(ρw + ρw) ⊗, (p1 − p2)})
= i(ρw − ρw) ∧ (p2 − p1) − 2i(s2 − s1)w ∧ w. (71)

Thus,

{1x1
⊗, 1x1} = − 1

m4
{W ⊗, W } = −{X ⊗, X}.

A.7. Proof of lemma (4.1)

Since 6 = Mx = MX − p ∧ (x − X) = R + 1x1 ∧ p and

m2R = −{W ⊗, W } = −i(ρw − ρw) ∧ (p2 − p1) + 2i(s2 − s1)w ∧ w

(cf (71)), we have

m26 = 2 Im ρw ∧ (2p2) + 2i(s2 − s1)w ∧ w

(recall that m21x1 = 2 Im ρw). Now,

[(ρw − ρw) ∧ p2]AA′BB ′ = (ρηAπA′ − ρπAηA′
)ηBηB ′ − ηAηA′

(ρηBπB ′ − ρπBηB ′
)

hence (cf (57))

2[(ρw − ρw) ∧ p2]AB = (ρηAπA′ − ρπAηA′
)ηBηA′ − ηAηA′

(ρηBπA′ − ρπBηA′)

= 2ρf ηAηB.

Similarly,

2[w ∧ w]AB = ηAπA′
πBηA′ − πAηA′

ηBπA′ = f (ηAπB + πAηB).

Finally

im26 = 2f ρη ⊗ η + f (s1 − s2)(η ⊗ π + π ⊗ η)

= f [η ⊗ (ρη + (s1 − s2)π) + (ρη + (s1 − s2)π) ⊗ η].
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A.8. Proof of the formula (36)

We have

{ηA, Xb} =
{

ηA,
zb + zb

2

}
= 1

2 {ηA, zb} = i

2f
{ηA, ωBηB ′ − λBπB ′ }

= 1

2f
εABπB ′ = − 1

m2
(πAηB − ηAπB)πB ′ = 1

m2
(ηApb

1 − πAwb)

and

{ηA, 1xb
1 } = 1

im2
{ηA, ρwb − ρwb} = 1

im2
{ηA, ρ}wb = 1

m2
πAwb.

Adding these two results and taking the complex conjugation we get (36).

Remark 5.1.Similar computation gives

{πA, xb} = 1

m2
(πApb

2 − 2ηAwb).
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